Improving Statistical Image Reconstruction for Cardiac X-ray Computed Tomography
نویسندگان
چکیده
Improving Statistical Image Reconstruction for Cardiac X-ray Computed Tomography by Jang Hwan Cho Chair: Jeffrey A. Fessler X-ray computed tomography (CT) is one of the most widely used imaging modalities for medical diagnosis. Recent advancements in CT scanner technology have led to increased use of CT in various applications. Unfortunately, these technological advances in CT imaging pose new challenges such as increased X-ray radiation dose and complexity of image reconstruction. Statistical image reconstruction methods use realistic models that incorporate the physics of the measurements and the statistical properties of the measurement noise, and they have potential to provide better image quality and dose reduction compared to the conventional filtered back-projection (FBP) method. However, statistical methods face several challenges that should be addressed before they can replace the FBP method universally. Such challenges include substantial computation time, anisotropic and nonuniform spatial resolution and noise properties, and other artifacts. In this thesis, we develop various methods to overcome these challenges of statistical image reconstruction methods. Rigorous regularization design methods in Fourier domain were proposed to achieve more isotropic and uniform spatial resolution or noise properties. The design framework is general so that users can control the spatial resolution and the noise characteristics of the estimator. Experimental results show the proposed method can achieve its goal with modest computation cost. In addition, a regularization design method based on the hypothetical geometry concept was introduced to improve resolution or noise uniformity. Proposed designs using the new concept effectively improved the spatial resolution or noise uniformity in the reconstructed image. The hypothetical geometry idea is general enough to be applied to other scan geometries. We investigated various methods to reduce image artifacts in reconstructed images caused by the short-scan geometry. Statistical weighting modification, based on how much each detector
منابع مشابه
Efficient and Accurate Likelihood for Iterative Image Reconstruction in X-ray Computed Tomography
We report a novel approach for statistical image reconstruction in X-ray CT. Statistical image reconstruction depends on maximizing a likelihood derived from a statistical model for the measurements. Traditionally, the measurements are assumed to be statistically Poisson, but more recent work has argued that CT measurements actually follow a compound Poisson distribution due to the polyenergeti...
متن کاملEmpirical correlation for porosity deduction from X-ray computed tomography (CT)
For obtaining reservoir petrophysical properties, for example porosity, non-destructive methods such as X-ray computed tomography, CT, seems to be precise and accurate. Porosity is deducted from the CT image with a single scan via different techniques, such as pore space detection by image segmentation techniques then correlation with porosity. More than one hundred samples with carbonate li...
متن کاملAccelerated Optimization Algorithms for Statistical 3d X-ray Computed Tomography Image Reconstruction
ACCELERATED OPTIMIZATION ALGORITHMS FOR STATISTICAL 3D X-RAY COMPUTED TOMOGRAPHY IMAGE RECONSTRUCTION by Donghwan Kim Chair: Jeffrey A. Fessler X-ray computed tomography (CT) has been widely celebrated for its ability to visualize the anatomical information of patients, but has been criticized for high radiation exposure. Statistical image reconstruction algorithms in X-ray CT can provide impro...
متن کاملQuadratic Regularization Design for Fan Beam Transmission Tomography
Statistical methods for tomographic image reconstruction have shown considerable potential for improving image quality in X-ray CT. Penalized-likelihood (PL) image reconstruction methods require maximizing an objective function that is based on the log-likelihood of the sinogram measurements and on a roughness penalty function to control noise. In transmission tomography, PL methods (and MAP me...
متن کاملArtifact reduction techniques in Cone Beam Computed Tomography (CBCT) imaging modality
Introduction: Cone beam computed tomography (CBCT) was introduced and became more common based on its low cost, fast image procedure rate and low radiation dose compared to CT. This imaging modality improved diagnostic and treatment-planning procedures by providing three-dimensional information with greatly reduced level of radiation dose compared to 2D dental imaging modalitie...
متن کامل